	科	目 名	学年
光物性基	perty 2P		
教 員	名 成島	和男:Narushima Kazuo	
単位	授業時間	科目区分	授業形態
2	100分×15回	選択	講義·前期

到達目標 評価方法

1)電磁波の伝搬や性質とその基礎となるマクス ウェルの方程式を理解し、説明ができる。 2)光の波動性と粒子性について理解し、物質と 光の相互作用を説明できる。 ②期末試験(40%)で評価する。

光の相互作用を説明できる。 3)光電素子の動作原理やをはじめ、光を利用した工学応用を広く説明できる。									
学習·教育目標 (E			(E)(2) JAB) (d)-	-(2) - a		
	IJ				内	容			
	第1	マクスウ 方程式(マクスウェルの方程式の基礎となる電界と磁界の概念と傾斜(grad)について説明する。					
	第2	マクスウェルの 方程式②		マクスウェルの方程式の一部であるガウスの定理と発散(div)について説明する					
	第3	マクスウ 方程式(マクスウェルの方程式の一部であるアンペアの法 則と回転(rot)について説明する					
	第4	マクスウ		マクスウェルの方程式の一部であるファラデーの 法則について説明する					
授	第5	電磁波	1	電磁波の伝搬について述べる。					
	第6	電磁波②		平面波および偏光の概念や電磁波の反射、透 過、屈折について説明する。					
業	第7	電磁波③		光の回折現象及	及び干渉効果について解説する				
	第8	光の二重性		光の波動性と粒子性について説明する。					
計	第9	光とエネルギー		光とエネルギーの関係について述べ、物質における光の吸収と放出について説明する。さらに物質とエネルギーの等価性について説明する。					
	第10	発光素子			子ビームやプラズマを用いた受講素子につい説明し、例としてCRTやプラズマディスプレイにいて説明する。				
画	第11	プラズマの応用		CRTやプラズマディスプレイ以外のプラズマの応 用を主に化学的な観点から述べる。					
	第12	受光素子①		半導体受光素子の例として、Siを用いた太陽電池 について解説する。					
	第13	受光素子②		半導体受光素子の例として、最新の太陽電池について解説する。					
	第14			光触媒の性質と応用、特に太陽電池の応用について述べる。					
	第15	まとめ		全体の学習事項のまとめを行う。また授業評価ア ンケートを行う。					
自	自学自習の内容 レポート			・を課す。					
	関連科目 電磁気等		学理論、量子力学						
			ディート(藤田広一 著/コロナ者)						
参考書 光エレクトロ		コニクスの基礎(宮尾亘・平田 仁/日本理工出版会)							
			最終回	こ授業評価アンケートを行う。					
副担当教員				ı_ ∟ 7 =⊻ nn - 1 - ~	7				
	備:	考	フリント	による説明を加え	<u>්</u> රං				