科目名		無機▪分析化学実験 Ⅱ (Exp. In Inorg. & Anal. Chem. Ⅱ)							
学 年	学	科(コース)	単 位 数		必修 / 選択	授業形態	開講時期	総時間数	
第2学年	#	勿質工学科	履修	2 単位	1	実験	後期 180 分/週	60 時間	

担 当 教 員 【常勤】友野和哲,茂野交市

学習到達目標

無機分析化学実験「で習得した器具の使用方法、実験データの取扱い、計算方法を使って、基本的な 定性・容量分析実験に関する知識と技術を習得することを目的とする。

(1)無機陽イオンの各反応を習得できる。

科目の到達 目標レベル

- (2)無機陽イオンの系統的定性分析を習得できる。
- (3)容量分析である中和滴定を習得できる。
- (4)容量分析である酸化還元滴定を習得できる。
- (5)容量分析であるキレート滴定を習得できる。

学習·教育目標 (A)

JABEE基準1(2)

関連科目,教科書および補助教材

関連科目 無機·分析化学実験I(2C), 分析化学I(2C)

教科書 「無機分析化学実験II_実験書」(講義第1回目に配布)、「実験・実習の安全-化学編」(実教出版)

補助教材等 「ダイナミックワイド図説化学」(東京書籍)、「溶液の化学と濃度計算」 立屋敷哲著(丸善)

達 成 度 評 価 (%)

評価方法指標と評価割合	中間試験	期末・ 学年末 試験	小テスト	レポート	口頭発表	成果品	ポートフォリオ	その他	合計
総合評価割合			20	50				30	100
知識の基本的な理解 【知識・記憶、理解レベ ル】			0	0					
思考・推論・創造への 適用力 【適用、分析レベル】			0	0				0	
汎用的技能				情報収集·課題発見力·論理的思考力				課題発見力	
態度·志向性(人間力) 【 】			主体性	自己管理力				○ 主体性·自己 管理力	
総合的な学習経験と 創造的思考力 【 】									

学習上の留意点および学習上の助言

【学習上の留意点・助言】実験は理工系学科の教育の根幹をなし,大きな意義を持つ。本実験は無機分析化学実験Ⅰ で習得したであろう技術を定性・定量分析で実践する。すべての物質は日常生活とは異なり高濃度のため危険と考え てよい。しっかりとした心構えで臨み,予習をきちんとお行うことが履修上の要点である。準備学習としては,テキスト・ 補助資料を通読のこと。特に安全委関わる部分(試薬の性質・反応など)を熟読しておくこと。レポート作成としては,関 連する基礎知識、またなぜ結果がそうなったのかその原理を、また予想された結果と異なった理由・原因、疑問に思う こと(課題発見力)をしっかりと考察すること。

【成績評価方法】各実験テーマごとに実験結果報告書(小テスト含む)及びレポートを提出させ,実験に対する姿勢(実 験ノート,予習状況,当日の実験操作)と共に総合的に評価する。単位を取得するためには原則としてすべてのレポー トを提出する必要がある。原則として、正当な理由なくして欠席した場合には単位を与えない。

授業の明細

	授業内容	到達目標	自学自習の内容 (予習・復習)					
1	ガイダンス/定性分析1	実験を進めるうえでの注意事項を各実験テーマの概略、レポートの作成方法について理解する。	無機分析化学実験Iで学んだことを復習しておくこと。					
2	定性分析2	第1属・第2属(甲)金属イオンの各反応を理解する。 (Ag, Pb, Cu, Bi)	教科書及びダイナミックワイドの対応頁を予習・復習しておくこと。 特に色と反応式を予習しておくこと。					
3	定性分析3	第1属・第2属(甲)金属イオンの系統分析を理解する。 (Ag, Pb, Cu, Bi)	教科書及びダイナミックワイドの対応頁を予習・復習しておくこと。 特に色と反応式を予習しておくこと。					
4	定性分析4	第3属・第4属金属イオンの各反応を理解する。 (AI, Cr, Fe, Co, Ni, Mn, Zn)	教科書及びダイナミックワイドの対応頁を予習・復習しておくこと。 特に色と反応式を予習しておくこと。					
5	定性分析5	第3属・第4属金属イオンの各反応を理解する。 (AI, Cr, Fe, Co, Ni, Mn, Zn)	教科書及びダイナミックワイドの対応頁を予習・復習しておくこと。 特に色と反応式を予習しておくこと。					
6	定性分析6	第3属・第4属金属イオンの系統分析を理解する。 (AI, Cr, Fe, Co, Ni, Mn, Zn)	教科書及びダイナミックワイドの対応頁を予習・復習しておくこと。 特に色と反応式を予習しておくこと。					
7	容量分析 中和滴定1	中和滴定を理解する。炭酸ナトリウム標準溶液及び 塩酸標準溶液の調整方法と評定方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
8	容量分析 中和滴定2	水酸化ナトリウム標準溶液の調整と評定方法を習得し、酢酸の定量分析を行う。過マンガン酸カリウム標準溶液の準備を行う。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
9	容量分析 酸化還元滴定1	過マンガン酸カリウムによる酸化還元滴定を理解する。シュウ酸標準溶液の調整方法を習得する。過マンガン酸カリウムの評定方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
10	容量分析 酸化還元滴定2	硫酸鉄(II)アンモニウム6水和物(別名:モール塩)中のFeの定量分析を習得する。過酸化水素の定量方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
11	容量分析 酸化還元滴定3	ヨウ素による酸化還元滴定を理解する。チオ硫酸ナトリウム標準溶液の調整と評定方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
	容量分析 酸化還元滴定4	溶存酸素の定量方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
13	容量分析 キレート滴定1	キレート滴定を理解する。Zn標準溶液の調整方法を 習得する。エチレンジアミン4酢酸の調整方法と評定 方法を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
14	容量分析 キレート滴定1	硫酸マグネシウム7水和物中のマグネシウムの定量 分析を習得する。キレート滴定を応用した水の硬度測 定を習得する。	教科書及び補助教材「溶液 〜計算」の対応頁を予習/ 復習しておくこと。特に計算 方法を復習しておくこと。					
15	まとめ	全体の学習事項のまとめを行う。 実験評価アンケートを行う。	これまでに学んだ定性分析・容量分析を復習しておくこと。					
	総技	60 時間						