科目名			電気回路 II C (Electrical Circuits II C)								
学 年	学 和	は(コース)	単(位 数	必修 / i	選択 拐	B 業形態	開講時	期終	時間数
第3学年	電気	瓦工学科		履修	1 単位	-		講義	前期] 3	0 時間
担当教	員	【常勤	】准教	対授 春山	和男	l .					
学習到達目標											
非正弦波交流をひずみ波と称する。前半においては、ひずみ波の特徴を理解し、ひずみ波による電力などを学習する。 例えば電流が流れていなかった回路に急に起電力を加えた場合や、今まで加えていた起電力を急に取り去るような場合には、既に学習してきた定常状態とは異なった特別の現象(過渡現象)を呈する。後半においては、この現象について学習する。 目標レベル 到達目標は、以下の3項目である。 ①ひずみ波に多数の正弦波交流が含まれることを理解できる。 ②ひずみ波の電圧・電流の実効値や電力について理解できる。 ③電気回路において生じる定常状態とは異なった特別の現象(過渡現象)について理解できる。											
到達目標 (評価項目)		れた到達 目 3		の良	好な到達し 目安		最低限の)到達レベ <i>。</i> 目安	ルの	未到達レ/ 目安	
到達目標①	ひず 波交	み波に多	数の正	とを 波交	TA ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	数の正弦 れることを	波交流が	に多数のエ	とを 波交	み波に多	数の正弦
到達目標 ②	実効 理解	値や電力 できる。	יונטני	NT 実効 /4	み波の電原値や電力に 程度理解で	について3 ごきる。	実効値や /5程度:	電力につし 理解できる	NT3 実効 理解	できない。	こついて
到達目標 ③	定常 別の		異なっ 度現象	た特 定常)に 別の	「回路におい 状態とは り現象(過渡 で3/4程 。	異なった特 表現象)に	定常状態 別の現象		た特 定常)に 別の		異なった特 (現象)に
学習・教育到:	達目標		((C)	J	JABEE基準	1(2)				
				适	成度	評 価 (9	6)				
指標と評価割合	価方法		中間 式験	期末・ 学年末 試験	小テスト	レポート	口頭 発表	成果品	ポートフォリオ	その他	合計
総合評価割合			40	40		20					100
知識の基本的な 【知識・記憶、理		1	0	0		0					
思考・推論・創造 適用力 【適用、分析レベ			0	0		0					
汎用的技能 【 】											
態度·志向性(人	、間力)										/
総合的な学習経 創造的思考力 【 】	経験と										

	関連科目,教科書および補助教材
関連科目	電気回路 I 、電気回路II
教科書	電気回路、金原粲、実教出版
補助教材等	各種電気回路関連書

学習上の留意点

ひずみ波のフーリエ級数展開では三角関数が、過渡現象では微分積分の知識が特に重要である。 解き方を丸暗記するのではなく、数式が意味している事を理解することが大事である。

担当教員からのメッセージ

(ひずみ波)

この講義では、ひずみ波といっても周期的なものだけに限定している。きちんと仕組みを理解すれば、全く難しくないと思う。 (過渡現象)

理論を学ぶ上では、スイッチをONにしたときには一瞬でONになり、OFFにしたときには一瞬でOFFになるとしていたが、実際にはそうはならない。特にLやCがある場合は顕著である。これらを学ぶことで、より現場に近い現象を学ぶことになる。

授 業 の 明 細						
	授業内容	到達目標	自学自習の内容 (予習・復習)			
1	導入 ひずみ波交流	・講義の位置付けを説明できる。 ・フーリエ級数について概要を説明できる。	(予習) 予習として、三角関数 についての復習をして おくこと。			
2	フーリエ係数の求め方(1)	・フーリエ級数の公式の導出方法を説明できる。				

	授業内容	到達目標	自学自習の内容 (予習・復習)
1	導入 ひずみ波交流	・講義の位置付けを説明できる。 ・フーリエ級数について概要を説明できる。	(予習) 予習として、三角関数 についての復習をして おくこと。
2	フーリエ係数の求め方(1)	・フーリエ級数の公式の導出方法を説明でき る。	
3	フーリエ係数の求め方(2)	・矩形波のフーリエ級数を求めることができ る。	
4	フーリエ係数の求め方(3)	・パルス波のフーリエ級数を求めることができ る。	
5	フーリエ係数の求め方(4)	・据歯状波のフーリエ級数を求めることができ る。	
6	フーリエ係数の求め方(5)	・三角波のフーリエ級数を求めることができ る。	
7	フーリエ係数の求め方(6)	・半波・全波整流波のフーリエ級数を求めることができる。	
8	ı	中間試験	
9	ひずみ波の実効値 ひずみ波電圧・電流による電力	・ひずみ波の実効値を求めることができる。 ・ひずみ波の瞬時電力を求めることができる。 ・ひずみ波の有効電力を求めることができる。	(予習) 予習として、微分・積 分についての復習をし ておくこと。
10	ひずみ波の皮相電力と力率	・ひずみ波の皮相電力と力率を求めることができる。	
11	過渡現象	・過渡現象とはどういうものか概要を説明できる。	
12	RとLの直列回路A	・RとLの直列回路に直流電圧を印加した場合 の過渡現象を説明できる。	
13	RとLの直列回路B RとCの直列回路A	・RとLの直列回路に交流電圧を印加した場合 の過渡現象を説明できる。 ・RとCの直列回路に直流電圧を印加した場合 の過渡現象を説明できる。	
14	RとCの直列回路B	・RとCの直列回路に交流電圧を印加した場合 の過渡現象を説明できる。	
	Ħ		
15	まとめ	・学習事項全体のまとめを行う。また授業アン ケートを行う。	
	総授	30 時間	