科目4	B	制御情報	工学実	習 I(P	ractice	in Intelli	gent Sy	stem Ei	ngineeri	ng I)	
学年 学科(コース)			単	位 数	必修 / i	選択 授	業形態	開講時	期終	朗 総時間数	
第1学年	制御性	青報工学科	履修	3 単位	必修		実習	通年	g	0 時間	
担当都	人員	【常勤】准	¥ 江原	史朗、教	授 落合積	した。 動教	野口慎		<u> </u>		
			:	学 習 到	達目根	#					
科目の到達 目標レベル	②実 ③回 ④プ	習作業上の「ダ 習で使用する。 路を製作する。 ログラマブルコ ルドゥイーノを「	回路素子に ことができる ントローラる	ついて説明 る。 を用いた制	月できる.	うムを作成っ	できる.				
到達目標 (評価項目		れた到達レベル 目安	レの 良	好な到達し 目安		最低限の)到達レベ. 目安	ルの	未到達レ⁄ 目安		
到達目標①	実習 つい あら	作業上の「安全 て詳細に説明で かる状況におい と」に配慮したん	でき、 つい いて 業時	日本 子作業上の いて説明でき まに「安全」 ・動ができる	「安全」に き,実習作 に配慮し	実習作業ついて説	上の「安全		- ロダ 作業上の て説明でき	「安全」(
到達目標 ②	子に でき,	で使用する回路 ついて詳細に記 目的に応じて を用することが	说明 選択 でき	で使用する ついて詳れる.			用する回路 て説明でき		で使用する		
到達目標 ③	用い	を製作し, 計測 て測定し, 得た リ特性の評価が	デー き,	計測器を用			作すること	がで 回路		ることが	
到達目標 ④	基本 ログ ⁻ を用	事項が説明で				ラを用いた制御プログラムを作成できる.			プログラマブルコントロ ラを用いた制御プログ ムが作成できない.		
到達目標	イコン プロ: 作成	ドゥイーノを用い ノを動かす応用 ブラムが作成て したプログラム 説明できる.	l的な イコ き, プロ を詳 作成		を基本的な ■成でき、	イコンを重 プログラ		的なとが		を用いる	
学習·教育到	達目標	(D)		JABEE基準	≛ 1(2)		I			
			j	成度	評 価 (9	6)					
語標と評価割合	序価方法 合	中間試験	期末・ 学年末 試験	小テスト	レポート	口頭 発表	成果品	ポートフォリオ	その他	合計	
合評価割合					50				50	100	
コ識の基本的 ^z 知識・記憶、理		1			0				0		
えき・推論・創造 開力 適用、分析レク					0				0		
l用的技能 】											
態度・志向性(ノ 】	人間力)										
総合的な学習網 制造的思考力 】	経験と										

	関	連	科	目	•	教	科	お	ょ	び	補	助	教	材
関連科目	情報リテラシー													
教科書														
補助教材等	プリント配布													

学習上の留意点

実習中は制服ならびに靴を着用していない者は実習が受けられず、欠席扱いとなることに注意すること.

適宜、レポートを課すので必ず提出すること

制御実習室(制御棟3階)において実習を行う.

回路製作では半田付け作業を行う場合があるが、部品の切断時にリードを飛ばしたり、半田こてで火傷をすることがないよ う, 「安全」には十分注意すること.

実習室のPCは共用であるため、PCへ個人の実習データは保存せず、各自が用意したUSBメモリにプログラム等を保存すること。

担当教員からのメッセージ

この実習は、回路製作、シーケンサ、マイコンプログラミングと多彩な内容となっています. どれも制御情報工学科の基礎・基本の知識ですので、しっかり復習して理解を深めておきましょう.

また、配布資料はファイルにまとめておきましょう。 1回につき長時間の実習となるので、欠席したときの補講が難しい科目です.日々、体調管理を行い、欠席することがないよ う努めてください。

授 業 の 明 細

	大衆の別権									
回	授業内容	到達目標	自学自習の内容 (予習・復習)							
1	ガイダンス テスタ, ブレッドボード, 抵抗, オームの法則	・授業の進め方、評価方法について理解できる・ブレッドボードとテスタが使用できる・オームの法則について説明できる	中学理科の電気を復習し ておく							
2	直列,並列,分圧,分流(実験)	・オームの法則による分圧・分流を理解できる ・実験結果をレポートにまとめられる	使用機器の使い方の再 確認とオームの法則を 復習しておく							
3	抵抗回路の製作(半田付け)と動作 チェック	・「作業の安全」について説明できる ・抵抗回路(抵抗の直列・並列)を半田付けで作 製できる ・動作チェックをすることができる	作業上の安全について 確認しておく							
4	オシロスコープの使い方 LED, スイッチの動作	・オシロスコープが使用できる ・LED, スイッチを使用した回路が作製できる	オシロスコープの使い 方、LED、スイッチの動 作について確認してお く							
5	基本論理回路	・AND回路、OR回路について説明できる ・ロジックICを使用した回路が作製できる	基本論理回路の動作に ついて確認しておく							
6	レポート作成	前半の内容についてレポートにまとめられる								
7	フォトリフレクタ、CdSセル	・フォトリフレクタ、CdSセルの基本事項を説明 できる ・フォトリフレクタ、CdSセルの特性を測定でき る	・フォトリフレクタ, CdSセルの動作について 確認しておく							
8	センサ回路の製作(半田付け)と動 作チェック	・センサ回路を半田付けで作製できる ・動作チェックをすることができる								
9	リレーの動作、自己保持回路	・リレーの基本事項を説明できる ・リレーを用いた自己保持回路を作製できる	・リレーの動作、自己 保持回路について確認 しておく							
10	トランジスタとその応用	・トランジスタの基本事項を説明できる ・トランジスタを用いた回路を作製できる	・トランジスタの基本 事項について確認して おく							
11	モータ制御とモータドライバ	・モータドライバの基本事項を説明できる・モータドライバを用いた回路を作製できる	・モータ, モータドラ イバの基本事項につい て確認しておく							
12	論理回路,ロジックIC	・NAND, NORについて説明できる ・フリップフロップ回路について説明できる ・ロジックICを使用してフリップフロップ回 路が作製できる	・基本論理回路について復習しておく ・フリップフロップ回 路について確認しておく							
13										
14	レポート作成	・後半の内容についてレポートにまとめられる								
15	前期まとめ	・前期の実習内容を分かりやすく説明できる								

授業の明細							
	授業内容	到達目標	自学自習の内容 (予習・復習)				
16	シーケンス制御 プログラマブルコントローラ 自己保持回路 インタロック回路	・シーケンス制御の基礎的事項について理解 する ・ラダー図を理解し、プログラマブルコント ローラのプログラムが作成できる	・各授業について概要 をまとめておく ・演習問題で作成した プログラムについて説 明できるようにしてお				
17	タイマ回路 カウンタ回路 	·AND回路、OR回路など基本的なプログラムが作成できる ・自己保持回路、インタロック回路、タイマ回路、カウンタ回路を用いた制御プログラムが作	< <				
18		成できる					
19							
20							
21							
22							
23	アルドゥイーノ(マイコン)プログ ラミング	アルドゥイーノ (マイコン) の基本的な使い方を理解する.・LED, スイッチ, 各種センサを用いてブレッ	・各授業について概要をまとめておく・演習問題で作成したったった。				
24		ドボード上で回路を作製する. ・アルドゥイーノ(マイコン)を用いて、作 製した回路を動かすプログラムを作成する.	明できるようにしてお く 				
25							
26							
27							
28							
29							
30	授業改善アンケートの実施						
	総 授	90 時間					