科目コード	記号	科 目 名	学年	単位·時間	必修·選択	授業形態	単位種別		
2268	CS49	物理化学実験:Experiments in Physical Chemistry	4C	2•270分	必修	実験・1/3年	履修単位		
数 昌	夕	小倉 董: OGURA Kaoru (物質コース担当) 久宮太志郎: KUBUKI Shiro (生物コース担当)							

授業 物理化学の講義で学ぶ固体、液体、気体の基本物性、状態および反応に関する理論を実験を通して確認する。物質に関する数量的な理解のみならず、基本的な測定法の原理と操作法を習得する。さらに二三の機器についての機器分析実習を概 通じて、分析の基本的操作方法を説明する。 実験は、物質コース(前半)と生物コース(後半)に分かれて実施し、それぞれ1/3年間履修する。

要	実験	iは、物質コ	ース(前半)と生物コース(後半)に欠	∱かれ⁻	て実	施し、	それぞれ1/3 ⁴	拝間履修する。		
			到達目標	評価方法 (1)実験レポート(原理に関する項目を評価)					評価配分	
(2) 名 (3) 身 (4) 远 (5) 与	予実験デ 実験結果 適切な実 ラえられ	を正しく考察 験レポートを た課題に熱心	理解できる。 方法)が理解できる。 することが出来る。 是出期限までに提出することが出来る。 に取り組むことが出来る。 明することが出来る。	(2) 実験 (3) 実験 (4) 実験 (5) グル	食レポ 食レポ 食レポ レーブ	『一ト(手 『一ト(考 『一ト(全 『実験へ	法に関する項目 察に関する項目 体のバランスを の貢献度を評価	を評価)	15 % 15 % 40 % 10 % 10 %	
(0)		教育目標	(A)2	(0) H B	3) 口頭試問で評価する。 JABEE基準1(1) (d)-(2)-b)					
	in H							後期		
	第1 説明・注意事		内 容 実験を進めるにあたっての全体的事項、 テーマの概略、レポートの作成方法につ 明する。[前半](小倉 薫)			第16	項 目 密度の測定実 験	内 容 物質の密度を精密に求める方法を学ぶ。		
	第2	エステルの加水分解の実際	酢酸エステルの加水分解速度と反応温 (係を調べ、活性化エネルギーを求める。	度の関		第17	凝固点降下の 観測実験	ナフタレンのベンゼン溶液の凝固点降下を利用して、ナフタレンの分子量を求める。		
	第3	粘度測定の3 験	高分子溶液の粘度測定を行い、ポアズ- 定理より平均分子量を求める。	表置の原理 移動速度と		第18	機器分析実験 (1)	走査型電子顕微鏡の原理と使用法およびデータ解析法を学ぶ。		
	第4	輸率測定の3 験	電気量と物質量の関係、輸率測定装置 および測定方法を習得し、イオンの移動 輸率との関係を理解する。			第19	機器分析実験	X線回折法の原理と装置の使用解析法を学ぶ。	法およびデータ	
授	第5	燃焼熱測定 <i>0</i> 実験	が燃焼熱の測定方法として代表的なボンス 理と実験方法を習得する。	ブの原	授	第20	総合演習	 各テーマに対する検討。口頭試	問を行う。	
	第6	pH滴定の実	滴定曲線を精密に測定し、滴定曲線から 度定数を求める。	安定		第21				
業	第7	凝固点降下 <i>0</i> 観測実験) ナフタレンのベンゼン溶液の凝固点降下 して、ナフタレンの分子量を求める。	を利用	業	第22				
	第8	機器分析実際(1)	た 走査型電子顕微鏡の原理と使用法およ タ解析法を学ぶ。	びデー		第23				
計	第9	機器分析実際 (2)	核磁気共鳴法の原理と装置の使用法お データ解析法を学ぶ。	よび	計	第24				
	第10	総合演習	各テーマに対する検討。口頭試問を行う			第25				
画	第11	説明•注意事 項	実験を進めるにあたっての全体的事項、テーマの概略、レポートの作成方法につ明する。[後半](福地賢治)			第26				
	第12	エステルの加 水分解の実態	酢酸エステルの加水分解速度と反応温度 係を調べ、活性化エネルギーを求める。	度の関		第27				
	第13	粘度測定の3 験	高分子溶液の粘度測定を行い、ポアズ 定理より平均分子量を求める。	イユの		第28				
	第14	輸率測定の3 験	電気量と物質量の関係、輸率測定装置(および測定方法を習得し、イオンの移動輸率との関係を理解する。			第29				
	第15	燃焼熱測定 <i>0</i> 実験	が燃焼熱の測定方法として代表的なボンス 理と実験方法を習得する。	ブの原		第30				
	関連科		物理化学Ⅰ・Ⅱ・Ⅲ・Ⅳ							
_	<u>教科</u> 参考		い物理化学実験 第2版」小笠原他(三共) 里化学実験法」鮫島三郎(裳華房)	出版)						
授業評価・理解度 最終回に授業評価アンケートを行う。										
Ē	副担当教									
	備	方								