科目コード	記号	科 目 名	学年	単位·時間	必修·選択	授業形態	単位種別
2023	ESCG11	基礎数学 Ⅱ :Fundamental Mathematics Ⅱ	1ESC	2•90分	必修	講義∙通年	履修単位
数 吕	Ø	二油樹、MILIDA Kai					

本講義では、三角比と三角関数を扱う、三角関数は今後学ぶ数学に必要であることのみならず、自然科学、工学関係の論理記述に欠くことので きない重要な関数である。まず、鋭角と鈍角に対する三角比を定義しこれを三角形に応用する。次に関数の概念を説明し、グラフの形から得られる 関数の情報を理解し、応用する方法を説明する。特に、2次関数とそのグラフ、グラフと2次方程式・不等式の解との関連などを学ぶ。 講義後半では、一般角と弧度法を導入して三角関数を定義し、この関数のグラフ、三角方程式・不等式の解法、いろいろな性質、加法定理とその

応用(2倍角の公式, 半角の公式, 積を和・差に直す公式, 三角関数の合成など)を学ぶ.

評価方法

- 到 達 目 標 (1) 三角比の定義が理解でき、三角形に応用できる.
- (2) 2次関数についていろいろな立場からその意味を理解できる. (たとえばグラフと2次方程式・不等式との関連, グラフと接線)
- (3) 三角関数の基本的なグラフが描け、三角方程式・不等式が解ける.
- (4) 加法定理および加法定理より導き出される種々の公式が理解でき、逆にこれらの公式を自ら導き出すことができる。さらに、これらの公式を使うこ とができる.

|評価方法は、①定期試験、②小テスト、レポートで評価する. 評価配分は① 60%, ②40%とする.

	学習•	教育目標	(E)		JABE	E基準1(1)		
			前 期				後 期	
	回	項 目	内 容		回	項 目	内 容	
	第1	鋭角の三角比	シラバスの説明、鋭角の三角比の定義を説明する.		第16	三角関数(1)	一般角とは何か. 三角関数の定義	
	第2	鈍角の三角比	鈍角の三角比の定義を説明する.		第17	三角関数(2)	弧度法. 扇形の弧の長さと面積	
	第3	三角比の相互 関係	三角比の相互関係などの公式を説明する.		第18	三角関数の性 質(1)	三角関数の相互関係	
	第4	三角形への応用(1)	三角形への応用、特に正弦定理を説明する.		第19	三角関数の性 質(2)	三角関数の周期など	
授	第5	三角形への応用(2)	三角形への応用、特に余弦定理を説明する.	授	第20	三角関数のグ ラフ(1)	三角関数のグラフを描く	
	第6	三角形への応 用(3)	三角比を用いた、三角形の面積の求め方を説 明する.		第21	三角関数のグ ラフ(2)	三角関数のグラフを描く	
業	第7	中間まとめ	中間まとめとして試験を実施する.	業	第22	三角方程式· 不等式(1)	三角方程式・不等式の解法	
	第8	関数とグラフ	関数及びそのグラフについての一般的な説明. 1次関数,2次関数のグラフを説明する.		第23	中間まとめ	中間まとめとして試験を実施する.	
計	第9	関数とグラフ 2次関数	2次関数のグラフを説明する.	計	第24	三角方程式· 不等式(2)	三角方程式・不等式の解法	
	第10	関数とグラフ 2次関数	2次関数のグラフの練習問題、2次関数の最大・最小を説明する.		第25	まとめ	三角関数のまとめとして、練習問題を行う.	
画	第11	関数とグラフ 2次関数	2次関数と2次方程式の関係を説明する.	画	第26	加法定理	加法定理を導入する	
	第12	関数とグラフ 2次関数	2次関数と2次不等式の関係を説明する.		第27	加法定理の応 用(1)	加法定理の応用、特に倍角、半角の公式	
	第13	関数とグラフ べき関数	べき関数, 偶関数・奇関数, グラフの平行移動を説明する.		第28	加法定理の応 用(2)	加法定理の応用,特に積を和に直す公式,和 を積に直す公式	
	第14	関数のグラフ 一般の関数	関数のグラフから得られる情報に関して説明する.		第29	三角関数の合 成	加法定理を用いた三角関数の合成	
	第15	まとめ	2次関数のまとめとして、練習問題を行う.		第30	まとめ	全体の学習事項のまとめを行い、授業評価アンケートを実施する.	

基礎数学IA、基礎数学IB

新訂 基礎数学(大日本図書) 新訂 基礎数学問題集(大日本図書)、高専の数学(森北出版) 参考書

授業評価・理解度 最終回に授業評価アンケートを行う。

副担当教員

定期試験の再試験は実施しない 備考