科目コード	記号	科 目 名	学年	単位·時間	必修·選択	授業形態	単位種別
3171	MS44	応用工学実験 II: Applied Mechanical Engineering Laboratory II	5M	3·135分	必修	実験/演習・通年	履修単位
教 員							

授機械工学の各分野における種々の応用的な実験/実習/演習、あるいは、卒業研究に関連した実験/実習/演習を行う。実験/実習/演習を行うこと 業により、講義で学ぶ理論などの理解を助け、それらを体験的に学習する。あるいは、実験/実習/演習を行うことによって卒業研究の進展へ寄与す概。このことと共に、実験/実習/演習を通して関連する試験機、機器、道具などの操作方法に習熟し、データの測定、整理、解析方法、計算方法な要との様々な技法を習得する。

到 達 目 標	評 価 方 法	評価配分
(1)各実験/演習テーマの目的を理解しその実験/演習を体験することができること。	(1)報告書の目的の項を主に評価する。	10%
(2)関連する試験機、機器、装置、道具などの操作方法に習熟することができること。	(2)報告書の実験/実習/演習方法の項を主に評価する。	30%
(3)データの測定、整理、解析、計算方法などの様々な技法を習得することができること。	(3)報告書の実験/実習/演習結果の項を主に評価する。	30%
(4)実験/実習/演習結果を報告書にまとめることができること。	(4)報告書の考察/結論の項を主に評価する。	30%

	学習·教育目標	(A)②		JABEE基準1(1)	(d) - (2) -b)
		前期 │内 容			後
	回 項 目 実験室 (担当教員)	課題		実験室 (担当教員)	課題
	応用物理実験室 (吉田 政司)	1. 複合材の作成と特性評価		応用物理実験室 (吉田 政司)	同前期
	生産工学実験室 (小川 壽)	1. 鋳物材料の製作および加工		生産工学実験室 (小川 壽)	"
	材料力学実験室 (谷本 昇)	1. フォートラン言語 Ⅱ		材料力学実験室 (谷本 昇)	ıı .
授	材料強度·設計 実験室 (藤田 和孝)	-1. バルク金属ガラスの熱分析(DSCとTMA)	授	材料強度·設計 実験室 (藤田 和孝)	,,
	機械材料実験室 (徳永 仁夫)	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		機械材料実験室 (徳永 仁夫)	
業	熱工学実験室 (城戸 秀樹)	1. 燃烧解析 2. 燃烧実験	業	熱工学実験室 (城戸 秀樹)	
	流体工学実験室 (冨永 彰)	1. 流体実験装置の設計・製作 2. 流体工学実験		流体工学実験室 (冨永 彰)	"
計	機械力学実験室 (藤田 活秀)	1. MATLABによる振動試験のデータ解析	計	機械力学実験室 (藤田 活秀)	"
	自動制御実験室 (沖 俊任)	1. ロボット要素実験		自動制御実験室 (沖 俊任)	"
画	生産加工学実験室 (後藤 実)	1. 摩擦力測定用ロードセルの設計・製作・評価 2. 表面分析実験	画	生産加工学実験室 (後藤 実)	"
	機械電気システム 実験室 (岡 正人)	1. 機械語による外部機器制御		機械電気システム 実験室 (岡 正人)	"
	関連科目 各担当	教員が講義する授業科目			

関連科目	各担当教員が講義する授業科目
教 科 書	各担当教員が実験書・実習書(プリント)等を配布する。
参考書	各担当教員が指定する。