	科	目	名		学年	単位	授業時間	科目区分	授業形態	学修単位
電気エ	_学実験実習 II :l	aboratory Wor	ks on Electrical Er	gineering]	3E	4	180分×30回	履修	実験·通年	_
教 員 名								IIMA Shyouta		

授業概要

電気磁気学、電気回路、論理回路、電気計測、半導体素子、波形観測などについて、理論と実験とを比較し、各種特性・現象の理解を確実なもの とする。また、各種計測器を利用した測定技術を習得することを目的とする。

到達目標

評価方法

- 1)各種測定技術を習得する。 2)目的に応じた実験計画を立て、遂行し、解析できる。
- 3)結果に対して自分の考えを取り入れた説明ができ、またレポートにまと めることができる。
- 4)各種特性・現象を応用できる。

前期:実験レポート(100%)、後期:実験レポート(100%)により、前期・後期 をそれぞれ評価する。

	学習·教育目標	(A)	JABEE基準1(1)								
	項目	<u></u> 内 容		項目							
	電磁気実験 (田中) 実験説明	実施要領、計器の取り扱い、レポートの書き方等について説明する。		電子工学実験 (仙波·中島) 実験説明	実施要領、計器の取り扱い、レポートの書き方 等について説明する。						
	DC電位差計による計 器の補正	DC電位差計を用いてDC電圧計、電流計の目盛補 正を行い、指示計器の確かさを調べる。		ダイオードの静特性	ダイオードの電圧 - 電流特性、及びその温度 依存性を測定・理解する。						
	導体の固有抵抗測定	ダブルブリッジを用いて低抵抗測定法を修得し、各 導体の固有抵抗(抵抗率)を求める。 交流ブリッジによる周波数測定方法を修得し、交流 ブリッジについての理解を深める。		バイポーラトランジスタ の静特性	バイポーラトランジスタの静特性を測定し、そ の動作と特徴を理解する。						
授	周波数の測定			接合形電界効果トランジスタの静特性	接合形電界効果トランジスタの静特性を測定し、その動作と特徴を理解する。						
	キャパシタンスの特性 測定	キャパシタンスCの性質を理解する。	授	MOS形電界効果トラン ジスタの静特性	MOS形電界効果トランジスタの静特性を測定し、その動作と特徴を理解する。						
	インダクタンスの特性 測定	インダクタンスLの性質を理解する。		受光素子の特性	CdS光導電セル・フォトトランジスタの特性を測定し、それらの動作を理解する。						
業	等電位線	模型電極間の電位分布を測定し、等電位線、電気 力線を求めて電極付近の電界の状態を理解する。	業	組み合わせ論理回路	論理回路の設計(真理値表から論理式を求め、回路化する)を行う。						
	単相電力測定	単相電力計を用いて各機器の消費電力を測定し、その使用方法を習得するとともに、電圧計、電流計を併用して負荷の力率を測定しその概念を理解する。		フリップフロップ	基本的なフリップフロップ(RS, RST, JK, D, T)について論理的な動作確認とフリップフロップ動作の変換を行う。						
計	磁界の測定	ヘルムホルツコイルの中心軸上の磁束密度をガウスメータを用いて測定し、その分布を調べて電流による磁界についての理解を深める。	計	カウンタとシフトレジスタ	カウンタ(16進、10進、12進)、シフトレジス タ(5ビット)のタイミングチャート計測を行う。						
	基本論理演算回路	TTL,CMOSの電気的な特性計測、基本論理演算(AND,OR,NOT,NAND,NOR)の真理値表を作成する。		電子工作①	回路パターン図作成ソフト(PCBE)を用いたパターン図の作成演習を行う。						
画	論理回路の相互変換	NANDまたはNORだけで他の論理演算を行う接続(相互変換)と論理式の回路化を行う。 RLC直列共振回路、RLC並列共振回路の周波数に対する電流・位相特性を測定し、共振現象を理解する。 RL直列回路、RC直列回路に流れる電流の時間特性を測定し、過渡現象を理解する。		電子工作②	光センサーを利用したライントレーサーの回路 を設計し、動作確認を行う。						
	直列共振および並列 共振回路の特性			電子工作③	設計した回路のパターン図を作製する。						
	RL回路およびRC回 路の過渡特性			電子工作④	エッチングにより回路基板を作製する。						
	電気回路の演習	記号法による交流回路計算法についての演習を行う。		電子工作⑤	部品をハンダ付けし、ライントレーサーを組み立て、調整する。 走行試験を行う。						
	まとめ	全体の学習事項のまとめを行う。また授業評価アンケートを行う。		まとめ	全体の学習事項のまとめを行う。また授業評価アンケートを行う。						
自学自習の内容実験レポートを課す。											
関連科目電気磁気学、電気回路、電気計測、電子工学											
教 科 書 プリントテキスト											
		科目の教科書、電気エ学ハンドブック(電気学会/電気書院)									
		終回に授業評価アンケートを行う。									
副担当教員											