科 目 名	学年	単位	授業時間	科目区分	授業形態	学修単位					
電気工学実験実習Ⅲ : Laboratory Works on Electrical EngineeringⅢ	4E	4	180分×30回	必修	実験・通年	-					
数 員 名 【 橋本 其: HASHIMOTO Haiime 瀬戸山英嗣 Setovama Fiji 西田克美: Nishida Katsumi											

授業概

電子回路実験では、電子回路で学んだことを実験で確かめる。素子の特性計測や,基本的な回路の設計・製作・特性の測定等を行う

業概要	電子回路実験で	は、電	子回路で学んだことを実験で確かめる。素子の	特性	計測や, 基本的な回路	の設計・製作・特性の測定等を	ਰਿਹੇ	
			到達目標		評(五 方 法	評価配分	
(1) 知識・技術を統合し実験の目的・原理・手法を理解できること。 (2) 実験手法を習得して実施できること。 (3) 実験結果を整理・解析・図表化して報告書が作成できること。		(1) L (2) L (3) ≨	30% 30% 40%					
	学習·教育目標 A②			JABEE基準1(1)	(d)-(2)-b)			
	項 目		内 容		項 目	内 容		
	電子回路実験(格	喬本)			電力実験(瀬戸山)			
	1. トランジスタ埠回路	トランジスタ増幅 トラジスタの静特性の測定と、増幅回路の設計および周波数特性の計測を行う。			1. 衝撃電圧試験	衝撃電圧発生と空気の絶縁破壊電圧の測定 を行う。		
	2. FET増幅回路	FET増幅回路 FETの静特性の測定と、増幅回路の設計および周波数特性の計測を行う。			2. 太陽電池の基本 特性	太陽電池の基本特性を理解す	る。	
	3. オペアンプに 増幅回路	オペアンプによる 画回路 加算回路、減算回路、積分回路、対数変換回路の入出力特性計測を行う。			3. 系統連系イン バータの基本特性	系統連系インバータの基本特性を理解する。		
授	受 4. オペアンプを用い た各種演算回路		ハートレー、コルピッツ、ウイーンブリッジ発振 回路の特性計測を行う。	授	4. 送電線路におけるコロナ放電	大気中コロナ放電現象を測定する。		
	5. 正弦波発振回	回路	ハートレー、コルピッツ、ウイーンブリッジ発振 回路の特性計測を行う。		5. 白熱電球の特性	長型光度計により、白熱電球の る。)特性を求め	
業	6. アクティブフィ	ハタ	ローパスフィルタ、ハイパスフィルタ、ノッチフィ ルタの特性計測を行う。	業	6. 球形光東計によ る光束の測定	球形光東計により白熱電球の含る。	全光束を測定す	
	電気機器実験(西	(田)			電気機器実験(西田)			
計	1. 単相変圧器の)特性	無負荷試験、短絡試験により鉄損、銅損を求め、多様な負荷条件での効率計算を行う。	計	1. 直流発電機の負荷 特性	直流発電機において、分巻、ネ 動の負荷特性を測定し、」		
	1		Δ − Δ 、 Y − Y 、 Δ − Y 、 Δ − Y の 各 結線における 各 部 の 電圧・ 電流を 測定し、 各 結線 法 の 比較を する。		2. 三相同期発電機の 特性	無負荷試験、短絡試験により インピーダンスを求める。次に 率、電圧変動率を求	負荷をかけ効	
	運転		直流分巻電動機の始動法を修得し、界磁制 御、電圧制御による速度制御特性を実験によ り求める。	画	3. 電気動力計による IMの特性測定	電気動力計を用いて、三相誘導電動機の 荷特性を測定する。		
	4. 直流発電機の 荷特性	無負	他励運転により、無負荷飽和曲線を測定し、 次に自励にして、自己励磁現象、臨界界磁抵 抗について実験する。		4. 三相同期電動機の 始動と特性試験	三相同期電動機の始動法を修 試験により位相特性を実験に		
	5. 直流直巻電動機の 運転		直流直巻電動機の始動法を研修し、速度制御 特性を実験により求める。		5. サイリスタによる電 力制御実験	サイリスタ交流位相制御の動作を確認し、 御角と電圧の関係を求める。		
	6. 三相電力の測定		三相電力計を用いる方法、2電力計法など三 相電力の測定法を比較検討する。		6. 損失分離法による 三相誘導電動機の特 性	損失分離法を理解し、これに。 動機の特性を求め		
自	自学自習の内容 実験テーマ毎にレポートを課す。 							
	関連科目 電子回路 I 電子 国際による。							
	教科書 実験テキスト 参考書 電子回路(桜庭一郎他、森北出版)							
授業評価・理解度 最終回に授業評価アンケートを行う。								
	副担当教員							
	備 考							