		科	目名	一一学	:年	l i	単位	授業時間	科目区分	授業形態	学修単位
	物理化学		ments in Physical Chemistry		·C		2	270分×10回	必修	実験・1/3年	一
	教員		治:FUKUCHI Kenji、高田陽一			hi		270万 7710四	עויצ	人员 170十	
授業概要	らず、碁	基本的な測定法の	、固体、液体、気体の基本物性、 の原理と操作法を習得する。さら ず半)と生物コース(後半)に分か	に二三	の機器に	こつじ	へての機	器分析実習を通			
(1) :	到達目標				評価方法 (1) 実験レポート(原理に関する項目を評価)						評価配分 15 %
		実験テーマの原理が理解できる。 実験テーマの手法(方法)が理解できる。			(2)実験レポート(原理に関する項目を評価)						15 %
		線ナーマの手法(万法)が理解できる。 結果を正しく考察することが出来る。 (3		(2) 実験レパート(子法に関する項目を評価) (3) 実験レポート(考察に関する項目を評価)						40 %	
			ことが山来る。 は期限までに提出することが出来る。						3を評価) 評価、提出遅れは減点)		10 %
				木る。							
(5)	子 たられ	ルス は は 然心に	こ取り組むことが出来る。					の貢献度を評価	(積極性かない	と評価は低い)	10 %
(6) 1	テった実験を口頭で説明することが出来る。			(6) 口即		で評価		1	(1) (2)	10 %	
		・教育目標 (A)②						E基準1(1)	<u> </u>	(d)-(2)-b)	
	IJ	<u></u>	内 容			項		内容			
	第1	説明·注意事項	実験を進めるにあたっての全体値の取り扱い、各実験テーマの構作成方法について説明する。				第16	密度測定の実験	物質の密度を料	情密に求める方法を	を学ぶ。
	第2	エステルの加 水分解の実験	酢酸エステルの加水分解速度と を調べ、活性化エネルギーを求め		その関係 かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい		第17	表面張力測定 の実験		張力計を用いた別 則定法と原理を学ん	
	第3	粘度測定の実験	高分子溶液の粘度測定を行い、 理より平均分子量を求める。	ポアズイ	ュの定		第18	機器分析実験(1)	ガスクロマトグラ線作成と未知詞	ラフの原理と解析だ 【料分析を行う。	きを学び、検量
	第4	輸率測定の実験	電気量と物質量の関係、輸率測 よび測定方法を習得し、イオンの 率との関係を理解する。			第19	機器分析実験(2)	走査型電子顕統 解析法を学ぶ。	敞鏡の原理と使用	法およびデータ	
授	第5	燃焼熱測定の 実験	燃焼熱の測定方法として代表的 と実験方法を習得する。	なボンブ	の原理	授業	第20	総合演習	各テーマに対す 問を行う。	⁻ る検討。筆記試験	および口頭試
	第6	密度測定の実験	物質の密度を精密に求める方法	を学ぶ。							
業	第7	表面張力測定 の実験	Du Noüyの表面張力計を用いた: 液の表面張力測定法と原理を学		剤水溶						
	第8	機器分析実験(1)	ガスクロマトグラフの原理と解析: 線作成と未知資料分析を行う。	法を学び	、検量						
計	第9	機器分析実験(2)	走査型電子顕微鏡の原理と使用 解析法を学ぶ。	法および	ドデータ	計					
	第10	総合演習	各テーマに対する検討。筆記試験 問を行う。	験および	口頭試						
画	第11	説明·注意事項	実験を進めるにあたっての全体に 値の取り扱い、各実験テーマの標 作成方法について説明する。								
	第12	エステルの加 水分解の実験	酢酸エステルの加水分解速度と を調べ、活性化エネルギーを求る		要の関係						
	第13	粘度測定の実験	高分子溶液の粘度測定を行い、 理より平均分子量を求める。	ポアズイ	ユの定						
	第14	輸率測定の実験	電気量と物質量の関係、輸率測 よび測定方法を習得し、イオンの 率との関係を理解する。								
	第15	燃焼熱測定の 実験	燃焼熱の測定方法として代表的 と実験方法を習得する。	なボンブ	の原理						

自学自習の内容 各実験課題に対して、レポートを課す。

関連科目 物理化学Ⅰ、物理化学Ⅱ、物理化学Ⅲ、物理化学Ⅳ

教 科 書

自作した実験書を使用する。 「新しい物理化学実験 第2版」小笠原正明 他(三共出版)、「物理化学実験法」鮫島実三郎(裳華房) 参考書

授業評価・理解度 最終回に授業評価アンケートを行う。

副担当教員 備 考

事前に十分に予習を行って、実験に臨むこと。