科目名 物理 IB (Physics IB)										
学 年	学	科(コース)	単(位 数	必修 / 選	選択 授	業形態	開講時	期終	時間数
第1学年		質工学科 \$情報学科	履修	1 単位	必修		講義	後期	3	0 時間
担当教	員	【非常勤】詞	講師 金田	昭久	(【副担当】	准教授	木村 大自	1)	•	
					達目標		_			
(1) 力学に関する語句や法則について、説明することができる。 (2) 教科書の例題や問題を理解し、解くことができる。 (3) 物理の学習を通して、科学的な思考力や探究心、学習態度を高めることができる。 科目の到達 目標レベル										
到達目標 (評価項目)		た到達レベルの ₹) 良好	な到達レ ・	ベルの	最低限の 目安	到達レベル	レの 未到 目安	達レベルの	D
到達目標	力学 則に	に関する語句や ついて説明でき 体例を挙げるこ	法 、そ 則に	に関する ついて、訪	語句や法 说明するこ	力学に関 則につい	する語句や て、大まか ことができる	な説 則に	に関する! ついて、ほ ることがで	とんど説
到達目標②		に問題等の複雑な 理解し、解くこと 。				簡単な問: くことがで		、解 簡単くこと	な問題を5 ができない	
到達目標	学的 心、 の学	の学習を通して な思考力や探す 学習態度を高め 生に良い影響を ことができる。	ピログ 学的 、他 心、	な思考力	を高めるこ	学的な思	考力や探究 態度をやや	咒 学的 高め 心、	な思考力を	や探究
学習・教育到達目標			A JABEE基準		JABEE基準	1 (2)			_	
			這	成度	評 価 (%	5)				
評	価方法	中間 二 試験	期末・ 学年末		、小テスト、 カ、授業態	自宅学習	成果品	ポート フォリオ	その他	合計
総合評価割合		35	35	2	20	10				100
知識の基本的な 【知識・記憶、理) ©	0	(0	0				
思考・推論・創造 適用力 【適用、分析レベ		0	0	(©	0				
汎用的技能 【 】										
態度・志向性(人	.間力)									
総合的な学習紹 創造的思考力 【 】	経験と									

関連科目,教科書および補助教材				
関連科目	物理 I A, 物理 II, 数学 I A, 数学 I B, 数学 II, 化学 I A, 化学 I B			
教科書	『物理基礎』,『物理』(東京書籍)			
補助教材等	『ニューアチーブ』(東京書籍), 『スタディノート物理』(第一学習社), 配布プリント			

学習上の留意点

物理では新しい見方や考え方がしばしば出てくるため、最初、難しく感じるかもしれません。まず予習をしておおよその内容を理解し、疑問点や分からないところを見つけてください。授業をしっかり聞けば、多くの疑問点は解決できるでしょう。ノートや教科書は何度も読み直し、自分にとって分かりやすいようにメモを加えてください。疑問点などを友達と話し合い、理解を深めることも大切です。また、授業で出てくる重要な語句の意味を理解し、正しく覚えてください。例えば、「速度」や「カ」について、日常で使う意味と、物理で使う意味は、異なります。そのため、「速度」が何を表すのか分かっていないと、「速度」は求められませんし、次に習う「加速度」がどういう意味なのか理解できません。もし、分からなくなったときは、何が分からないから分からないのかを考え、前に戻って確認し、疑問を解決してください。

担当教員からのメッセージ

「物理IB」は「物理IA」に続く科目です。「物理IA」で学習した速度や加速度、力が基礎になります。等加速度直線運動は、物体の運動がイメージしやすいため、あまり難しくなかったと思います。運動方程式についても、1つの物体に1つの力が働いている場合は、考えやすかったと思います。「物理IB」では、最初に「糸でつながれた2物体の運動」や「斜面上の物体の運動」について学びます。これらの運動も運動方程式で表されるのですが、複数の力が出てくるため、混乱してしまう人が少なくありません。運動方程式にある力Fは、考えている物体に直接働く合力を表します。例えば、物体に重力と張力が働けば、この2力を足したものが合力Fです。単にF=maを覚えているだけでは、この式を使えません。もちろん、式の意味をきちんと理解すれば、誰でも容易に問題が解けます。これから様々な法則が出てきますが、式の意味がわかれば難しくありません。ただし、何となくの理解では、問題が解けません。

100	44	$\boldsymbol{\Phi}$	08	ķШ
授	業	の	明	細

	技 果 の 明 和						
回	授業内容	到達目標	自学自習の内容 (予習・復習)				
1	水平面上の物体の運動、斜面上の物 体の運動	水平面上の物体の運動、斜面上の物体の運動が 理解できる。	予習として p.56-58 を 読む。				
2	摩擦力が働くときの物体の運動	摩擦力が働くときの物体の運動が理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として p.58-61 を読む。				
3	仕事、仕事率	仕事、仕事率が理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として p.76-81 を読む。				
4	運動エネルギー、重力による位置エ ネルギー	運動エネルギー、重力による位置エネルギーが 理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として p.82-85 を読 む。				
5	弾性エネルギー、重力が関係する力 学的エネルギー保存	弾性エネルギー、重力が関係する力学的エネル ギー保存が理解できる	ノートを読み直し、予 習として p.85-89 を読 む。				
6	の保存、力学的エネルギー保存の法 則が成り立たない場合	弾性力が関係する力学的エネルギーの保存、力学的エネルギー保存の法則が成り立たない場合が理解できる。	ノートを読み直し、予 習として p.89-92 を読 む。				
7	運動量、力積	運動量、力積が理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として『物理』 p.66-68 を読む。				
8	運動量と力積の関係	運動量と力積の関係が理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として『物理』 p.68-70 を読む。				
9	後	と期中間試験					
10	試験返却・解答解説	試験問題の解答解説を通して間違った箇所を理 解できる。	後期中間試験の範囲を 復習				
11	運動量保存の法則、床や壁との衝突	運動量保存の法則、床や壁との衝突が理解できる。	予習として『物理』 p. 72, 73, 80, 81 を読 む。				
12	直線上の2物体の衝突、運動量と力 学的エネルギー	直線上の2物体の衝突、運動量と力学的エネルギーが理解できる。	ノートを読み直し、予 習として『物理』 p.82-85 を読む。				
13	等速円運動の表し方、等速円運動で の加速度	等速円運動の表し方、等速円運動での加速度が 理解できる。	ノートを読み直し、予 習として『物理』 p.32-35 を読む。				
14	向心力、遠心力	向心力、遠心力が理解できる。	前回の範囲の教科書と ノートを読み直し、予 習として『物理』 p.35-41 を読む。				
	<u> </u>						
15	試験返却・解答解説、1年間のまとめ、授業改善アンケートの実施	試験問題の解答解説を通して間違った箇所を理解できる。1年間のまとめが理解できる。	1年間に習った範囲の 教科書とノートを見直 す。				
	総授業時間数 30 時間						